Regulation and Control of Directionality of Mitotic Kinesin-5

by Prof. Dr. Christoph Schmidt

Fakultät für Physik, Biophysik
Georg-August-Universität
Göttingen

Abstract:

Complex cellular functions, such as mitosis, need a high degree of control of motors, and it is largely unclear still how this control is established in the cell. Kinesin-5 motors fulfill essential roles in mitotic spindle morphogenesis and dynamics and were thought to be slow, processive microtubule (MT)-plus-end directed motors. We have examined in vitro and in vivo functions of the Saccharomyces cerevisiae kinesin-5 Cin8 using single-molecule motility assays and single-molecule fluorescence microscopy. We observed that individual Cin8 motors could be switched by ionic conditions from rapid (up to 400 nm/s) and processive minus-end, to bidirectional, to slow plus-end motion. We also could detect plus- and minus-end directed motility in yeast cells. Evidence suggests that directionality is switched by binding between two microtubules.

Friday, November 4th, 2011, 13:00
Room PH 127

Contact:
PD Dr. Guenther Woehlke, guenter.woehlke@mytum.de, phone: 089/289-12486